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invariant quantities which are independent of the 
choice of origin. (~o+H.r~) satisfies this condition, 
but it takes a very different form from the invariants 
found in elastic diffraction, the simplest of which 
involves a sum of three phases (e.g. Bird, James & 
Preston, 1987). (q~ + H.r~) arises naturally in inelastic 
scattering theory because many such processes are 
localized about the atomic sites r~. It follows that in 
addition to thermal diffuse scattering, X-ray produc- 
tion and energy loss spectroscopy, phase-dependent 
two-beam effects should also be present in, for 
example, backscattered and channelling patterns 
(Marthinsen & H0ier, 1986; Marthinsen, Anisdahl & 
H~ier, 1987). Throughout the paper we have referred 
to our analysis being a two-beam theory, and in this 
context (q~ + H. r~) might be called a two-beam phase 
invariant. This, however, may be a little misleading.* 
Without an incident beam there could be no 'two- 
beam' Kikuchi pattern formation, so in this sense 
ours is a three-beam theory (one incident and two 
scattered beams), even though the incident beam is 
treated on a very different footing from the scattered 
beams and plays no significant role in the final results. 
Looked at this way, our results do not break the 
standard rule from elastic diffraction theory, that at 
least three beams are required to produce phase- 
dependent quantities. 

4. Concluding remarks 

The basic results of this paper are (2) and (4) which 
give the intensity distribution in a Kikuchi pattern. 
Both expressions show how structural information is 
carried in the pattern, provided a dependent-Bloch- 
wave theory is used. Equation (2) is valid in a general 
diffraction situation [with possible corrections from 
(5) and for absorption], such as the central region of 

* We are grateful to a referee for pointing this out. 

a strong band. The weakest lines in the pattern may 
be analysed using the two-beam result (4). In a second 
paper (Bird & Wright, 1989) computational results 
based on (2) and (4) are presented for crystals with 
the non-centrosymmetric GaAs structure and com- 
parison is made between theory and experimental 
patterns. 
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Abstract 

A necessary condition for possible translational parts 
of (3 + d) superspace symmetry operations is derived. 
The general conditions are discussed especially for 
(3+1) superspace symmetry operations and some 
examples illustrate the application. 
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I. Introduction 

An electron density function of incommensurate crys- 
tals with an internal dimensionality d can be 
described as a periodic function ~ in ( 3 + d ) -  
dimensional space (de Wolff, 1974). The translational 
periodicity in (3 + d) superspace is characterized by 
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110 (3 + d) SUPERSPACE SYMMETRY OPERATIONS 

a lattice A spanned by b l ,  b 2 , . . .  , b3+d, 

d 

bi=a~ - ~  (qj.a~)ej ( i = 1 , 2 , 3 )  

j=l (1) 
bi+3 = ei ( i=  1, 2 , . . . ,  d) 

where ei are additional vectors perpendicular to an 
external space VE and qj are incommensurate modu- 
lation vectors: 

3 

qj = ~ o)~a* (2) 
i=l 

where the vectors a*, q~ ( i=  1, 2, 3 and j = 1 , . . . ,  d) 
are rational independent. This means that any linear 
combination with rational coefficients of these vectors 
only vanishes if all the coefficients are zero. In par- 
ticular this implies (Janner, Janssen & de Wolff, 1983, 
hereafter referred to as I) that 'in every linear combi- 
nation with integral coefficients of the rows of o" there 
is an irrational entry'. 

A (3+ d)-dimensional symmetry operation S, 

,~(rE, r l )=(rE '  ,r~) and p(rE," ' r t ' )=p(rE,  rl) 

is described in matrix form with respect to the base 
b l , . . . , b3+d  by 

( F E  O ) ( r ~ ) +  (sE'] (r~']  
FM FI r~ \ s / / = \ r ~ /  (3) 

where FE, FM and F~ are 3×3,  d × 3  and d × d  
matrices describing the rotational part of S and sE 
and s~ are 3 × 1 and ~d x 1) columns describing the 
translational part of S. 

The property that a subset of the reflections (in this 
case the so-called main reflections) belongs to a 
reciprocal lattice (spanned by the a*) left invariant 
by the symmetry operations leads to 

FM = trFE - Fro'. (4) 

In accordance with I, we split o" in two parts o'~ + trr, 
where 

,~,r~ - r , , , ,  =o (5a) 

holds for all S from the superspace group and where 
the matrix O'r is composed only of rational elements. 
Equation (4) can be rewritten 

FM =O'rFE -Fl~r. (5b) 

The intrinsic rational increment ~- as defined by de 
Wolff, Janssen & Janner (1981) (hereafter referred to 
as II) for elements of a (3+l)-dimensional super- 
space group can be generalized by the equation 

'l" : S I  - - ~ r S E  (6) 

for elements of a (3+d)-dimensional  superspace 
group and is again the most convenient parameter 
for characterizing the translational part of these ele- 
ments. This can be illustrated by considering the 

translational part of the product S of two superspace 
group elements S~) and g~2~: 

lr~ (2 )~  ( 1 ) -~- S(E2) (7a) S E = 1 E a E  

r~2~o~,, r~,2~s~,,~ ~_ s~,~ sl =--M~E + . (7b) 

The expression (7b) can be rewritten by using (5b) 
and (6) into a more convenient form for the incre- 
ments -r: 

-r = r(,2)-rc~) +'r C2~. (8) 

Equation (8) is analogous to (7a) and the calculation 
of the translational part is separated into external and 
internal subspace. 

All possible translational parts of ( 3 + d )  super- 
space symmetry operators can be derived from the 
simple requirements that S", where n is the order of 
the rotational part of S", so that F" = E (E being the 
unit matrix), has to be some translational operator 
in (3 + d) superspace. 

The next section contains a derivation of the 
necessary condition for the translational part of (3 + 
d) superspace symmetry operators and the last sec- 
tion contains the application of this method for (3 + 1) 
superspace symmetry operators. 

2. A necessary condition for a translational part of a 
(3 + d) superspace symmetry operator 

Let the orders of FE and F! be n and m, respectively. 
Equation (5a) for F" has the form 

~ i -  FT~ri = 0  

which leads, owing to the incommensurability of q 
vectors, to the conclusion that V7 = E; this means that 
the order m = n/p where p is an integer and that the 
operator S" can be expressed as 

g" = ( E l { r } . s )  (9) 

where 

{F}, = E + F + . . . + F  "-~ 

/ {FE}. 

The operator (1/n){F},, where n is an order of F, is 
a projection operator into an invariant subspace of 
F. The requirement that the operator (9) should be 
some translational operator (E I (IE, Ii)), leads to 

{FE},sE = ns° =IE ( l l a )  

, , r { r ~ } . s ~  - {r,}. ,~rSE + { r , } . s ,  

=nCrrS°-{F,},CrrSE+{F,},,s,=l,, ( l l b )  

where s ° is an intrinsic translational part of the three- 
dimensional symmetry operator. The first equation 
( l l a )  restricts these parts, as for three-dimensional 
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symmetry operations in the usual space group. The 
second equation (11b) shows us the necessary con- 
nection between s ° ,  O'r and s~, which leads to some 
additional restrictions for s ° and sx. This condition 
can be simplified by using "r: 

nO.rS° +n,r°=ll (12) 

where "r ° =  (1/m){Fl},,,'r is the projection of- r  into 
the invariant subspace of the operator F~ in d- 
dimensional internal subspace. 

Note that O'r = 0 leads to a complete splitting of 
conditions ( l l a )  and (12) for sE and s~ = ' r  into two 
independent ones. 

3. Application to (3 + 1)-dimensional superspace 
groups 

The main simplification of expressions follows from 
the fact that F~ is ±1 and that the matrices er, o'~ and 
o', are replaced by row vectors q, qi and q,, respec- 
tively. Equation (5a) is now 

qi =qirE f o r E / =  1 (13a) 

(1 /n )q ,{ rE} .  = 0  f o r t ,  = - 1 ,  (13b) 

which means that qi is from an invariant subspace of 
FE for FI = 1 and qi is perpendicular to this subspace 
for F t  = -1 .  A similar simplification of (12) leads to 
the formulae 

n(qr.S°)+n'r=Ii forF~ = 1 (14a) 

n(qr.S°)=l, for F ,  = - 1 .  (14b) 

Table 2 of II was derived under the assumption 
that various kinds of centring in planes or spaces 
containing the additional vector e are expressed 
through qr without any change of the base (1), which 
means that It from (14a) and (14b) has to be an 
integer. 

Two examples were chosen to illustrate the applica- 
tion of these rules. 

Example 1 

Twofold screw axes along x, y and z in orthorhom- 
bic superspace groups [ q i  : ( 0 ,  0 ,  3 / ) ,  q r  ---- (Ce , / 3 ,  0 ) ] .  

From (13a) and (13b) it follows that F~ = -1 ,  -1  and 
1 for (2~)x, (2~)y and (2~)z, respectively. Thus we have 
from (14a) and (14b) a = 17,/3 = l~ and 2 z =  l~ for 
(2~)x, (21)y and (2~)z, respectively, which means that 

Table 1. Values of r for the operators of Example 2 

Operator P A B W 
ay 1.s q l , s  q 
a: 1 - -  1 - -  
b. 1 ,s  1, s q q _ 
b :  1 1 - -  - -  
c x 1, s 1, s 1, s 1, s 
cy 1, s 1, s 1, s l , s  
nx 1, s 1, s q q 
ny l , s  q 1, s q 
n z 1 - -  - -  1 

(2~)x must not be combined with qr described by A 
[ q , =  (½, 0, 0)] or W [qr = (½, ½, 0)], (2~)y with B [ q , =  
(0, ½, 0)] or W and z = 0 or ½ for (21)z. 

Example 2 

Glide planes a, b, c and n with the normal along 
x, y and z in orthorhombic superspace groups [qi-- 
(0, 0, 3/), qr = (eL/3, 0)] • 

Possible ~, values of these operators are given as a 
function of qr in Table 1. A - sign means that the 
operator must not be combined with certain qr. 

The results of the previous examples enable us to 
understand why some of the orthorhombic super- 
space groups do not exist. 

The two-line symbol of (3 + 1) superspace groups 
as defined in II is very convenient for application of 
the equations (14a) and (14b) because qr, S0E and z 
can be derived from them, at least for operators used 
in the Herman-Mauguin  symbol. The method 
described in this paper enables us to make a simple 
checking of the correctness of symbols o fa  superspace 
group. These necessary equations can also be used 
during a process of generating the complete list of 
superspace groups. But on the other hand these condi- 
tions cannot substitute the determination process as 
was described in II because they are necessary but 
not sufficient conditions. 

The author thanks Professor P. Coppens and Dr 
C. Novfik for stimulating discussions. 
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